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In this note particular cases of the notion of a gyroscope containing 
an ellipsoidal cavity filled with an ideal, incompressible liquid are 
considered and necessary and sufficient conditions are established for 
the stability of such motions, 

1. The equations of motion of a symnetrical gyroscope with an 
ellipsoidal cavity filled with an ideal incompressible liquid, whose 
vorticity is assumed to be constant for all its points, were obtained in 
different forms, under different assumptions concerning the acting forces 
and the cavity location, by Greenhill [ 1 1 I Hough f 2 1 , Poincare [ 3 1 , 
Zbukovskii [ 4 1 and others. * If no forces are present except gravity, 
then after the introduction of the Zhukovskii function Y the motion of 
the system can be described by two ordinary vector differential equations 

$=(H.V)VY.(R-H), ‘; =L, H (t) = ‘/? rot v (1.1) 

Here R (t) is the instantaneous angular velocity of the gyroscope and 
L is the angular momentum of the moment of the gravity forces, the system 
has the form: 

W = Jo-R + J.H -+ J1.(s2 - II) = (J,, +J+fi + (J - J,).H (1.2) 

where J, is the inertia tensor of the shell, J the inertia tensor of the 
liquid mass in the cavity and J, the inertia tensor of the *equivalentn 
rigid body corresponding to the liquid in the cavity [4 ‘1. 

* After submitting this note to the editors, I learned about the article 
by V.V. Rumiantsev. *On the stability of the rotation of a rigid body 

containing an ellipsoidal cavity filled with liquid”, Trudy of the 

Mechanics Institute of the Academy of Sciences USSR, No.2. 1956. also 

devoted to the problem investigated. 
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If we consider the “astatic* (semi-fixed) system of coordinates O[q [ 
(Fig. 1) of the gyroscope, which does not take part in the rotation of the 
gyroscope about the common axis of synvnetry of the shell and of the 
cavity O<, then the tensors J, + J,, J - J, have only the constant 
diagonal components A,, Cl and A,, C2, respectively. 

Denoting the projections of H and R along this set of axes by pi, qI, 

‘1’ P? q, r, we obtain the follawing equations of motion 

(6 is the eccentricity of the ellipsoid, CI = b, c are the semi-axes of 
the ellipsoid). 

Since we have for the ellipsoid of revolution 

Aa -I (1 
4MllV 

- E) G = 5 @2 + C2) 

where M is the mass of liquid in the cavity, it follows from the third 
equation of (1.3) and (1.4) 

C1r '=o, r = const = f. 

Denoting the direction cosines of the vertical (line of action of the 
weight vector) by ylt y2, y3 in the selected coordinate system, the weight 
of the system by P, and the distance from the center of gravity of the 
system to the fixed point by h, we can then write 

I. = P?zS” x g” L1 = PhYz, f;z = - PAYI 

The kinematic equations must be added for completeness 
. 

Yl = -_Ysr ;z=PY3> *A = QYl - PYe (1.5) 

Equations (1.3) to (1.5) define completely the motion of the gyroscope 
far a given initial position and initial angluar velocities of the system. 

2. If the cavity is spherical, then 6 = 0, A, = C2 = z/5Ma2, therefore 
after elimination of pi, ql, equations (1.4) become 
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I.e., they become independent of pl, qtg rl. Equations of motion of the 

rigid gyroscope, in the selected coordinate system, have then the form 
. 

Ap + Cr0q = P~Yz, Ai - Crop = - Phy, , A = Al + AZ, c = Cl + cz (2.2) 

Equations (1.5) remain the same. As was established by Chetaev [ 6 1 , 
a necessary and sufficient condition for the stability of motion of a 

rigid gyroscope rotating about the vertical position of equilibrium is 

given by the inequality 

4APh 
r0* > cs - = rOl* 

Repeating the above reasoning and calculations in its entirety, we can 

obtain the necessary and sufficient condition for the stability of motion 

of a symnetrical gyroscope with a spherical cavity filled with an ideal, 

incompressible liquid, rotating about its vertical position of equilibrium 

(p = q = 0, r = ro, y = y2 = 0, y,, = 1). Ihe stability condition is ex- 
pressed by the inequa ity f. 

4AIPh 
ros > --@-= ros2 

If the moments of inertia of the system are replaced by the moments of 

inertia of the *transformed rigid body" 14 1, the system will behave as a 

rigid gyroscope which does not contain a liquid mass. 

Fig. 2. 

It is of interest to estimate the influence of the liquid by investig- 

ating the ratio of the critical angular velocities 

Graphs expressing such a relationship are given in Fig. 2. It follows 

from the diagrams that, for example, in the simplest case in which the 

density of the shell and of the liquid are the same, the critical angular 

velocity r02 increases with an increase in the cavity size if C$ A 

(k < lf (i.e. A, C is constant, therefore k remains constant). If 
A < C < 2A (1 < k < 2) with respect to rol, the critical angular velocity 

increases at first and then decreases. The condition k >/ 2 does not exist 
because 2A > C always. 
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3. In the case of a very thin shell, its moment of inertia can be 
neglected entirely, and if the fixed point is located at the center of 
the cavity, it is again possible to apply the Chetaev method [5-7 I. In 
this case 

Al =+M(ar+ c*)G, C&=0, C2 = $ Ma%, A*=(i-c)C~ 

and the equations (1.4) reduce to 

I+= 
P = - 7 J-1 I91 (I- 4 + WI, 9 

I-Fe 
= y- rlIPltf---I;)+wl (3.f) 

EZquations (1.3 do not change and equations (1.51, after determining 
p and q from (3.1) and (1.31, permit us subsequently to find yl, y2, y7. 

bations (3.1) and (1.3) give the following first integrals 

l+E p‘J + qa - E rla = const 

pla + q12 + l--- r12 = cclnst (3.2) 

1 + ZE 
2pp1+2991+ Jy'12= const 

or by elimination of rl, we obtain 

P2+P+ '.(pis + g12) =const, ipp, + 2qql- ‘~(pls + qlf$Eiip = con& (3.3) 

Taking a linear combination of the above integrals 

l--E 
I’=~‘,+hVz=p2+2Appl+p12 E-- 

( 

11+2c 
1+E 

> 
+ 9% + 2xqq1+ 

+ q1* ( iG - h *$) (3.4) 

we see that such a quadratic form, being constant by virtue of the equa- 
tions of motion, will be positive-definite if, and only if 

1 h 

h 
I-E 1+2cx 
of 1+t% 

__lz_-IEz+l!>o 

In order to select X so that the inequality would be satisfied, the 
following relation must hold 

i.e.either E>O (@> ce), or c<-4 (8 > 9alB) (3.5) 

In the light of the results obtained by N.G. Chetaev 1.5, 6 I, this 
appears to be a necessary and sufficient condition for the stability, 
with respect to the variables p, q, p 

under consideration about the vertica 1 
t ql, of the motion of the gyroscope 
position of equilibrium. Such con- 

ditions were obtained before by Hough 12 1 as conditions for the stability 
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of the linearized equations, i.e. the equations of the first approxima- 
tion. 

4. If the gyroscope oscillates about the vertical position of equi- 

librium, then the linearization of equations (1.3) and (1.4) leads to the 

following. Considering p,, q,, p, ‘7 to be small and neglecting their 
products we obtain 

. 
r1= 0, Or rl= const=rfJ W) 

MOreOver, denoting the position of the gyroscope axes by the angles a 

and @ between the vertical and the planes cO[ and ~04, respectively, 

we can also disregard their squares and products because the system 

O[& is astatic and does not participate in the gyroscope rotation about 

its own axis. By assumption, they remain small during the entire duration 

of the motion. As a result, we have 

Let 

p=& q=-4, yl=a, ya=B, y8=1 (4.2) 

us substitute these values into (1.3) and (1.4) 

jr= clO[=71+ (1 + 4 & 'b + E (1 - e) k.goql - ro (kl + czka) i = ka@ 

(;l=-rro[~pl-(i+~)$]~ a+&(l-E)kzropl+ro(kl+eakz)~=ksa (4.3) 

where 

We now introduce the complex variable Z = a 2 i@'= NetXt. Eliminating 

P,J Q1, we now obtain the following characteristic equation for (4.3): 

AS +ro+- k, - c2kz) h2 + [ks - ro*c (k, + k,)] X + voka = 0 (4.4) 

Since an unstable first approximation corresponds to complex roots of 

(4.4) and a periodically stable first approximation to real roots, then 

on the basis of the well-known Liapunov theorem [8 f , the presence of 

complex roots in (4.4) is a sufficient condition for instability of 

gyroscope motion as a whole. In the presence of real roots, we are deal- 

ing with a critical case - three pairs of purely imaginary roots. The 

sufficient condition for stability, therefore, well be expressed by the 

inequality 

f(t*) = I*~+QEL~+~~F+~~>O (4.5) 

which represents the transformed condition of the occurrence of complex 

roots in equation (4.4). Here the notation was introduced 

F=r$, x1 = k, + c2kz - E, =2 = kx + k2 

a1 = $ f27G + BE (3x1 -2x,) -x1*], 

aa = 3 [3&X, (2x2 - 3x1) + 7Q fns - 2x,)], 
ng= -- “‘z”” (lQ + 4EX~) 
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It is of interest to point out the fact that the characteristic 

equation is of the third, and not of the second degree, so that the stable 

motion of the gyroscope axis, besides precession and nutation, will also 

perform a "nutation of the second order". This means that the axis 

rotates with constant angular velocity A., around the center O?, which in 

turn rotates with angular velocity A, around the center 0, and the latter 

rotates with angular velocity A, around the projection of the gyroscope 

axis in the position 0, of the so-called "sleeping top". [Al, A,, A, are 

roots of (4.41.1 

In t~~p~ticular case of the spherical cavity t = 0, a2 = ag = 0, 

a1 = - <4 1 ‘ equation (4.5) can be written in the form 

i.e. the motion is unstable when 

p>y, - or 4ks 4PhA, 
rQa< @ = cla -= rOaa 

As was shown before, this sufficient condition for instability is also 

a necessary one. 

In the case of the ninertialess* shell (k, = 0, k, = (l+ cl/c2,k3 = 01, 

equation (4.4) changes into the new equation 

Thus we obtain again the same instability condition as in Section 3: 

-+<o (U<C<&z) 

5. Let us look now into the problem of the nearly spherical cavity. 

To be definite, we take a sphere equal in volume to the investigated 

ellipsoid. Considering the coefficient 6 to be small, we expand the 

coefficients of the inequality (4.5) in a power series in 6 and then seek 

its roots also as a power series in E; we finally obtain the following 

f(~)=(Er-ELf)(EL--i*$)(~--ELgf>O (5.1) 

PI= P2o - ho - 2i ~kxokao) E + W% 1 

C 

1 
RI = T 

& 

t*e = (ho- ho + 2i ~Wao) E + 0 (~9, 
ho2 + F ho - 

( >I 
de o E + 0 w (5.2) 

The subscript zero indicates that the corresponding value was 

calculated at c = 0, i.e. 

can be easily calculated 

for the original sphere. The qusntity(dkl/dr),, 

dkl 1 --- = - 
dc A12 ( 

A dC1 C dAl 
1 de - ’ do > 

To evaluate dti,/dc 
of these 

and dC, /dc at t = 0, one can determine the changes 

moments relative to changes of the cavity shape, from spherical 

into ellipsoidal, and then evaluate the limits 
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l’he computations yield 

dk 
x = - -& -‘+ ho (2 + ko) (5.3) 

(y is the density of the liquid, y1 is the density of the shell 1. 

It follows from the obtained expressions (5.2) that two of the roots 

of inequality (4.5) are complex for small values of E. The inequality 

evi.dently is fulfilled when ~1 > p3 , i.e. the motion is unstable when 

This indicates that in such a case the qualitative picture remains the 

same as for the rigid body. It possesses only one critical angular velo- 

city. Nevertheless, it was not proved that the motion will be stable at 

r,,’ > k3 /cL~, because we have only investigated the linearized equations 

here. 

6. Although the qualitative picture appeared to be the same as for the 

rigid body in all the cases considered above, still, since the instability 

condition (4.51 is expressed mathematically as a cubic inequality (the 

corresponding inequality for a rigid body is linear), one can expect new 

cases: absolute instability (if inequality (4.5) does not have positive 

real roots) or the appearance of a second region of instability at the 

larger angular velocities (when two or three positive roots of inequality 

(4.5) are present. 

For example, at 6 = - 0.5, k, = 0.5, the inequality (4.5) becomes 

P3- 0.0850 p2- 0.0350 p+ 0.061 >a 

and it is satisfied everywhere (one negative root and two complex). The 

motion of such a system is always unstable. Nevertheless, the problem 

concerning the construction of a real gyroscope containing the cavity with 

k,, k, and 6 prescribed, although being theoretically fully realizable 

(there are only three equations to deal with for 6 to ‘7 selected quanti- 

ties: three parameters characterizing the cavity, density of the shell 

and the fluid and parameters defining the external contour of the body), 

is extremely difficult to cope with in practice, and therefore no examples 

of such *anomalous~ gyroscopes are presented in this paper. 
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